
Dimensional effects on exciton states in nanorings

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 346202

(http://iopscience.iop.org/0953-8984/19/34/346202)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 04:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 346202 (11pp) doi:10.1088/0953-8984/19/34/346202

Dimensional effects on exciton states in nanorings

Zhensheng Dai and Jia-Lin Zhu

Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China

E-mail: zjl-dmp@mail.tsinghua.edu.cn

Received 12 April 2007, in final form 21 June 2007
Published 20 July 2007
Online at stacks.iop.org/JPhysCM/19/346202

Abstract
Exciton states in nanorings are studied within the framework of the effective-
mass approximation. The exciton level structure and binding energy in one- and
two-dimensional nanorings are found to be very different at small and large
radius limits. The variation of exciton energy levels with radius and width is
shown. The important role of Coulomb interaction in exciton spectra is revealed.
Our study is helpful for understanding the transition of exciton states from the
one-dimensional case to the two-dimensional case.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rapid development in fabrication techniques has made it possible to realize nanoscopic
semiconductor rings [1–4]. Because of their special shape and size (60–100 nm in outer
diameter, about 20 nm in inner diameter and 2 nm in height) [3], carriers can be well confined in
three dimensions and can propagate coherently. In experiments, many spectroscopic techniques
have been used to investigate the properties of nanorings. Capacitance–voltage spectroscopy
measurements show that only one or two electrons can be filled in the ring, and far-infrared
transmission spectroscopy under a magnetic field shows the transition of the ground state
from angular momentum l = 0 to −1 [3, 4]. Photoluminescence (PL) spectra of nanorings
have also been measured to investigate the energy-level structures of neutral and charged
excitons [5–9]. In theoretical studies, various potential models and methods have been used
to study the abundant electronic structure of carriers in nanorings [10–21]. The Aharonov–
Bohm (AB) oscillations of excitonic levels have been predicted in a one-dimensional (1D)
nanoring [22–24]. Yet, there are still controversies over whether the AB effect of excitons exists
or whether it can be observed in realistic nanorings [25–35]. Recently, studies of polarized
excitons and their optical AB effect in nanorings have been presented [36, 37].

Quantum behaviours of excitons in nanorings, such as AB effects, are strongly related
to the ring dimension and Coulomb interaction [38, 39]. However, only a few groups have
concentrated on the effects of dimension and interaction on energy spectra of excitons in
nanorings [38–41]. More effort is still needed to get a better understanding of the difference of
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excitonic properties in nanorings of different dimensions. The difference of energy levels and
binding energies between 1D and two-dimensional (2D) nanorings, as well as the transition
between them, has not been systematically studied. In this paper, we investigate the energy
levels and binding energies of exciton states in 1D, quasi-1D (Q1D) and 2D nanorings.
The dimensional effects on energy levels and singularity effects on wavefunctions are also
discussed. The remainder of this paper is organized as follows. The model Hamiltonian and
calculation method are presented in section 2. Energy levels and binding energies of an exciton
in different nanorings are discussed in section 3. Finally, we summarize our results in section 4.
The variation–diagonalization (V–D) method we use is described in the appendix.

2. The model

The Hamiltonian of an exciton confined in a 2D nanoring with radius R and width W can be
written as

H =
∑

i=e,h

[
− h̄2

2m∗
i

∇2
i + Ui (ri )

]
− ωe2

4πε0εr |�re − �rh| , (1)

where ω is adopted to indicate whether the Coulomb interaction term is included (ω = 1) or
not (ω = 0). me(h) and Ue(h) are the effective mass and corresponding ring-like potential for
electrons (holes). ε0 and εr are the vacuum permittivity and static dielectric constant of the
host material, respectively. In the following calculations, the confinement is modelled by an
infinite hard-wall potential with radius R and width W . R and W are respectively defined as
the average value of the inner and outer radius and their difference. When W is much smaller
than R and aB (the effective Bohr radius of excitons), the nanoring is usually regarded as a Q1D
case. W = 0 corresponds to so-called 1D nanorings.

The confinement of radial motion is always stronger than that of azimuthal motion, which
is much more easily affected by Coulomb interaction. We can adiabatically separate the
Hamiltonian of equation (1) into two parts, as follows:

H = HR + HA (2)

with

HR =
∑

i=e,h

[
− h̄2

2m∗
i

(
∂2

∂r 2
i

+ 1

ri

∂

∂ri

)
+ Ui(ri )

]
(3)

and

HA = − h̄2

2m∗
er 2

e

∂2

∂ϕ2
e

− h̄2

2m∗
hr 2

h

∂2

∂ϕ2
h

− ωe2

4πε0εr

√
r 2

e + r 2
h − 2rerh cos (ϕe − ϕh)

. (4)

HA includes both the azimuthal motion part and a Coulomb interaction term. In terms of center-
of-mass coordinate � = (m∗

eϕe + m∗
hϕh)/(m∗

e + m∗
h) and relative coordinate ϕ = ϕe − ϕh, HA

can be expressed as

HA = HAc + HAr + H ′
A, (5)

with

HAc = − h̄2

2
(
m∗

e + m∗
h

)2

(
m∗

e

r 2
e

+ m∗
h

r 2
h

)
∂2

∂�2
, (6)

HAr = − h̄2

2

(
1

m∗
er 2

e

+ 1

m∗
hr 2

h

)
∂2

∂ϕ2
− ωe2

4πε0εr

√
r 2

e + r 2
h − 2rerh cos (ϕ)

, (7)
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and

H ′
A = − h̄2

(
m∗

e + m∗
h

)
(

1

r 2
e

− 1

r 2
h

)
∂

∂�

∂

∂ϕ
. (8)

In order to solve HA numerically, we introduce variational parameters Re, Rh, � and δ to

describe the effective 〈re〉, 〈rh〉, 〈
√

r 2
e + r 2

h 〉, 〈(2rerh)/(r 2
e + r 2

h )〉, respectively. Then HA is
rewritten as

HA = HQ + H ′
Q (9)

with

HQ = HQc + HQr, (10)

where

HQc = − h̄2

2
(
m∗

e + m∗
h

)2

(
m∗

e

R2
e

+ m∗
h

R2
h

)
∂2

∂�2
, (11)

HQr = − h̄2

2

(
1

m∗
e R2

e

+ 1

m∗
h R2

h

)
∂2

∂ϕ2
− ωe2

4πε0εr�
√

1 − δ cos (ϕ)
, (12)

and HQ′ is the remainder of HA.
Equation (3) can be exactly solved by a series expansion method [10]. Its eigenvalues and

corresponding eigenfunctions are given as ER(ne) + ER(nh) and 
R,ne(re)
R,nh(rh). Since
those variational parameters in equations (11) and (12) could be different for different ne

and nh, we replace them with Re
ne

, Rh
nh

, �ne,nh and δne,nh , respectively, to better describe the
Coulomb interaction. The eigenfunctions of equation (10) can be written as the product of

Qc(�) and 
Qr(ϕ). Noting the periodic boundary conditions of ϕe and ϕh, i.e., 
Q(ϕe, ϕh) =

Q(ϕe + 2π, ϕh) = 
Q(ϕe, ϕh + 2π), we can deduce both the period of 
Qc(�) to be 2π , and
the following relation


Qc(�)
Qr(ϕ) = 
Qc

(
�+ 2πm∗

e

m∗
e + m∗

h

)

Qr(ϕ + 2π). (13)

Equation (11) can be simply solved as

EQc(M) = h̄2 M2

2
(
m∗

e + m∗
h

)2

(
m∗

e

Re 2
ne

+ m∗
h

Rh 2
nh

)


Qc,M(�) = 1√
2π

exp (iM�)

(14)

with M = 0,±1,±2, . . .. Then the solution to equation (13) is


Qr(ϕ) = exp

(
i2Mπm∗

e

m∗
e + m∗

h

)

Qr(ϕ + 2π). (15)

The eigenenergies EQr( j) and eigenfunctions 
Qr, j (ϕ) of equation (12) including Coulomb
interaction (ω = 1) can be obtained by using a series expansion method [42] with j =
0, 1, 2, . . . indicating the order of energy levels. Based on the above solutions, a set of
variational bases can be constructed as


λ = 
R,ne(re)
R,nh(rh)
Qc,M(�)
Qr, j (ϕ), (16)

where λ = {ne, nh,M, j} represents the set of quantum numbers defined above. By defining

Eλ = ER(ne)+ ER(nh)+ EQc(M)+ EQr( j) (17)

H ′
Q,λ,λ′ = 〈λ|H ′

Q|λ〉, (18)
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the V–D process, which will be described explicitly in the appendix, can be simply written as
∑

λ′
[(Eλ − Ei)δλ,λ′ + H′

Q,λ,λ′ ]Ai
λ′ = 0

Eg = min
{Re

ne ,R
h
nh
,�ne,nh ,δne ,nh }

E0.
(19)

The eigenenergies Ei , including Eg = E0, and the expansion coefficients of the
eigenwavefunctions Ai

λ′ can be simultaneously obtained with proper parameters.
Without Coulomb interaction (ω = 0), equation (12) is analytically solvable.

EQr(m) = h̄2m2

2

(
1

m∗
e Re 2

ne

+ 1

m∗
h Rh 2

nh

)


Qr,m(ϕ) = 1√
2π

exp (imϕ) ,

(20)

where m = k − (Mm∗
e )/(m

∗
e + m∗

h) with k an integer. The process of obtaining eigenenergies
and wavefunctions is similar to that in the ω = 1 case. However, the quantum number j there
should be replaced by k. Then the binding energy of ground state can be obtained as

EB = Eg(ω = 0)− Eg(ω = 1). (21)

What has been introduced above is for 2D nanorings. For a Q1D nanoring, the radial
motion of the electron and the hole can be approximately decoupled from the azimuthal motion
due to the small width. Thus, Re

ne
and Rh

nh
can be taken as their average values 〈ne|re|ne〉 and

〈nh|rh|nh〉, respectively. Since Re
ne

and Rh
nh

are approximately equal to each other, H ′
Q,λ,λ′ would

be small. Thus, in the first-order perturbation theory, the total energies and wavefunctions of
the exciton with ω = 1 are

E(λ) = ER(ne)+ ER(nh)+ EQc(M) + EQr( j)+ H ′
Q,λ,λ


λ = 
R,ne(re)
R,nh(rh)
Qc,M(�)
Qr, j (ϕ).
(22)

The minimum of E(ne, nh,M, 0) and proper parameters �ne,nh and δne,nh can be determined
by using the variational method. As for a 1D nanoring, the system can be described by taking
ne = nh ≡ 0, Re

0 = Rh
0 = R and �0,0 = √

2R with H ′
Q = 0 and δ0,0 = 1, and then it can

be exactly solved by using the series expansion method introduced earlier [42]. For either the
ground or excited state of an exciton confined in a 1D or Q1D nanoring, the binding energy can
be defined as the difference in energy of two corresponding levels without (ω = 0) and with
(ω = 1) the Coulomb interaction term as

EB(λ) = E(ne, nh,M, k)− E(ne, nh,M, j). (23)

3. Results and discussion

We take parameters m∗
e = 0.067, m∗

h = 0.335 and εr = 12.4 for GaAs materials. The
corresponding effective Rydberg Ry∗ and effective Bohr radius a∗

B are 5.8 meV and 9.79 nm,
respectively. In this section, we will discuss the energy levels and binding energies of an exciton
in 1D, Q1D and 2D nanorings with M = 0. For the sake of convenience, we define the energy
E1(Q)(M, j) as the azimuthal part of E(λ) in equation (22) and the corresponding binding
energy EB1(Q)(M, j) as EB(λ) in equation (23) with λ = {0, 0,M, j}.

First, we would like to obtain proper values of the variational parameters �ne,nh and δne,nh .
It is found that, as long as the ratio of W to R is small, the energies and |〈λ′|H ′

Q|λ〉| of
ground states with fixed ne and nh can reach their minima with almost the same �ne,nh and
δne,nh . In calculations, we use the variational method to get a set of �ne,nh and δne,nh with
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Figure 1. Dependence of (a) �ne,nh and (b) δne,nh on W for Q1D nanorings with R = 2.04 a∗
B.

fixed ne and nh for different R and W . In figure 1, the dependences of �ne,nh and δne,nh with
(ne, nh) = (0, 0), (1, 1) and (2, 2) on W are shown for Q1D nanorings with R = 2.04 a∗

B

(20 nm). The�ne,nh are approximately equal to
√

2R as W → 0 and they increase slowly with
W . The δne,nh are a little smaller than 1 and decrease with increasing W . Although the δne,nh

are very close to that of the 1D nanoring (δ0,0 = 1), quite different properties between exciton
states in 1D and Q1D nanorings can be found, and this will be discussed below.

3.1. Dimensional effects

In figure 2, we plot the energy levels E1(0, j) and EQ(0, j) of an exciton in 1D and Q1D
nanorings as functions of R. When R is not very large, the rings with W/R = 1/2 are fairly
narrow and can be adopted to describe Q1D nanorings. Since the energy of the ground state in
a 1D nanoring is negative infinity, we will only concentrate on the excited states. It is easy to
note the difference between E1(0, j) and EQ(0, j). Because the rotational symmetry in relative
motions is destroyed by the attractive Coulomb term, we classify the exciton states into the even
and odd states by the symmetry of the wavefunction. As is shown in figure 2(a), E1(0, j) with
energy order j varies greatly with R. As R → 0, E1(0, 2k − 1) and E1(0, 2k), corresponding
to the even and odd states, approach infinity. As R → ∞, the energy levels converge to those
of 1D excitons in which the even and odd states are degenerate. In contrast, in a Q1D nanoring,
as shown in figure 2(b), the energy of the ground state only approaches negative infinity as
R → 0. The level order of EQ(0, j) for very small R is the same as that of E1(0, j); however,
with increasing R, crossings between the adjacent energy levels of even and odd states can be
found. Marked by the rectangle in figure 2(b) is a crossing between EQ(0, 1) and EQ(0, 2) at
R ≈ 1.0 a∗

B. As R → ∞, the degeneracy between even and odd states does not exist, and
the energies of even states are always higher than those of the corresponding odd states. We
should note that the sign of the Coulomb interaction term also changes the degeneracy of the
even and odd states. For example, the even (singlet) and odd (triplet) states of two electrons in
1D nanorings are split, and the interaction energies increase with node numbers [42].

A remarkable difference can also be found between the binding energies EB1(0, j) and
EBQ. In order to better illustrate the behaviour of the binding energies as R → 0, we introduce

5
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Figure 2. Energy levels E1(0, j) and EQ(0, j) of an exciton in 1D (a) and Q1D (b) nanorings
versus R, where j is the energy order as shown by the arrow (red). The solid and dashed lines
correspond to even and odd states, respectively.

Table 1. Normalized binding energies of an exciton in a 1D nanoring with different R.

R (a∗
B) 0.1 1.0 5.0 20.0

Even ẼB1(0, 0) ∞ ∞ ∞ ∞
states ẼB1(0, 1) 1.028 25 2.330 72 22.185 00 334.683 64

ẼB1(0, 3) 2.296 48 4.164 09 10.825 85 88.737 86

ẼB1(0, 5) 3.528 32 5.639 96 14.266 46 49.237 18

ẼB1(0, 7) 4.749 44 7.032 68 16.899 45 42.827 42

Odd ẼB1(0, 2) 0.171 40 1.920 26 22.185 00 334.683 64

states ẼB1(0, 4) 0.214 38 2.216 59 10.564 09 88.737 31

ẼB1(0, 6) 0.239 75 2.443 49 11.793 18 49.237 17

ẼB1(0, 8) 0.257 85 2.611 03 12.893 70 42.706 33

the normalized binding energies ẼB1(Q)(0, j) = EB1(Q)(0, j) · R2. As shown in figure 3(a)
and table 1, ẼB1(0, 2k − 1) and ẼB1(0, 2k), corresponding to even and odd states, approach
constants and zero, respectively, as R → 0. At the small radius limit, such as R = 0.1 a∗

B, all
ẼB1(0, 2k − 1) are larger than ẼB1(0, 2k). The characters of the normalized binding energies
mentioned above are similar to those of the interaction energies of two electrons [42]. That
is to say, the singularity effect of the 1D attractive Coulomb term is much the same as that
of the repulsive term as R → 0. However, the R-dependence of the binding energy is quite
different from that of interaction energies. The binding energy of the even state, ẼB1(0, 2k −1),
remains larger than that of the odd state, ẼB1(0, 2k). The difference between ẼB1(0, 2k−1) and
ẼB1(0, 2k) decreases with increasing R and the corresponding even and odd states approach
degeneration as R becomes ever larger. Crossings between ẼB1(0, j) of even and odd states can
appear as R increases from 0 to a finite value. In Q1D nanorings, those characters mentioned
above changed greatly due to the absence of singularity in the Coulomb term. As shown in
figure 3(b), crossings of binding energies between different states also appear as R varies.
Unlike ẼB1(0, j), the ẼBQ(0, j) of even states are larger than those of odd states, and all of
them approach zero as R → 0.

To better understand the effect of a regular singular point in the Coulomb term, we plot
the relative wavefunctions 
1r, j(ϕ) and 
Qr, j(ϕ) of an exciton in a nanoring with different R

6
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Figure 3. Normalized binding energies of an exciton in (a) 1D and (b) Q1D nanorings as functions
of R. The solid and dashed lines correspond to even and odd states, respectively.

Figure 4. 
1r, j (ϕ) of 1D nanorings (a) and 
Qr, j (ϕ) of Q1D ones (b) with R equal to 0.4 a∗
B.

(c) and (d) are the same as (a) and (b) except R = 4.0 a∗
B. Solid and dashed lines correspond to

even and odd states, respectively.

in figure 4. Since M in equation (15) is taken as zero, the periods of 
1r, j (ϕ) and 
Qr, j (ϕ) are
equal to 2π . Then we can choose the region of ϕ as [−π, π). It can be seen that 
1r, j(ϕ) and

Qr, j (ϕ) of odd states are almost the same. For the same even state, 
Qr, j(ϕ) has one more
node than 
1r, j(ϕ). For small nanorings such as R = 0.4 a∗

B, exciton states mainly depend
on the confinement. As shown in figure 4(a), 
1r,2(ϕ) has one more node than 
1r,1(ϕ),
so E1(0, 2) is higher than E1(0, 1). In figure 4(b), both 
Qr,2(ϕ) and 
Qr,1(ϕ) have two
nodes, and the difference between EQ(0, 2) and EQ(0, 1) is less than that between E1(0, 1)
and E1(0, 2). However, for large nanorings such as one with R = 4.0a∗

B, the attractive
Coulomb interaction makes relative wavefunctions of both 1D and Q1D exciton states localize
to ϕ = 0. In figure 4(c), 
1r,1(ϕ) approaches zero at ψ = ±π , while 
1r,1(ϕ) and 
1r,2(ϕ)

have almost the same value in [0, π), which makes E1(0, 1) and E1(0, 2) tend to be degenerate.
In figure 4(d), it is easy to note the parity change of
Qr,1(ϕ) and
Qr,2(ϕ), which represents the
crossing between EQ(0, 1) and EQ(0, 2). 
Qr,2(ϕ) has the same number of nodes as 
Qr,1(ϕ)

and is more extended than 
Qr,2(ϕ), so EQ(0, 2) is larger than EQ(0, 1).

7
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Figure 5. (a) Size effect of E(ne, nh, 0, j) for nanorings with W/R = 1/2 and (b) shape effect
of E(ne, nh, 0, j) with R = 2 a∗

B. The solid, dashed and dotted lines correspond to states with
j = 0, 1, 9.

Table 2. Quantum numbers and orders of E(ne, nh, 0, j) for three different nanorings. The
underlined letters indicate that orders of corresponding energy levels become lower than those of
(2, 1) (a∗

B).

(R,W )

(a∗
B)

a: (0, 0, 0), b: (0, 0, 1), c: (0, 1, 0), d: (0, 1, 1), e: (0, 0, 9), f: (0, 2, 0), g: (0, 1, 9), h: (0, 2, 1), i: (0, 2, 9),
j: (1, 0, 0), k: (1, 0, 1), l: (1, 1, 0), m: (1, 1, 1), n: (1, 0, 9), o: (1, 2, 0), p: (1, 1, 9), q: (1, 2, 1), r: (1, 2, 9),
s: (2, 0, 0), t: (2, 0, 1), u: (2, 1, 0), v: (2, 1, 1), w: (2, 0, 9), x: (2, 2, 0), y: (2, 1, 9), z: (2, 2, 1), ∗: (2, 2, 9)

(2, 1) a b c d e f g h i j k l m n o p q r s t u v w x y z ∗
(4, 2) a c b f d e g h j i k l m o n p q r s u t v x w y z ∗
(2, 2) a c b f d h j l e k m g o q i n s p u t r x v z w y ∗

3.2. Nanorings with different sizes and shapes

Size and shape effects of an exciton in 2D nanorings with finite width are studied by the V–
D method. In calculations, we take ne, nh = 1, 2, 3 and j = 0–9 and construct 90 basis
functions. Exciton states can be indexed by the quantum numbers (ne, nh,M, and j ) of their
major components. As R varies, the behaviour of E(ne, nh, 0, j)with fixed ne and nh is similar
to that of EQ(0, j) in a Q1D nanoring. Those crossings between even and odd states obtained
by Q1D Hamiltonian still exist in the case of the V–D method. The effect of size and shape on
energy levels of an exciton in 2D nanorings is more complex than that in Q1D nanorings. For
convenience, we choose E(ne, nh, 0, j) with j = 0, 1, 9 for each pair of ne and nh to study
the size and shape effect induced by the radial motions. Figure 5(a) shows the size effect of
E(ne, nh, 0, j) with W/R = 1/2, and figure 5(b) shows the shape effect of E(ne, nh, 0, j)
with R = 2 a∗

B. As R and W increase, the energies of different states decrease monotonically
and crossings between them occur at different positions. To make this clear, we draw a vertical
dashed line in both figures 5(a) and (b) which indicates the same nanoring with R = 2 a∗

B
and W = 1 a∗

B. We also list the energy orders and their quantum numbers of exciton states
in nanorings with (R,W ) = (2, 1), (4, 2) and (2, 2) a∗

B in table 2. The sequence of letters in
the first row corresponds to the energy order along the dashed line. Crossings in figure 5(a)
are mainly found to be related to E(ne, nh, 0, 0) and can be attributed to the competition
between the confining potential and the Coulomb interaction. There are more crossings in
figure 5(b) because the variation of W not only changes the radial confinement but also changes
the Coulomb interaction.

In previous works, the binding energy of an exciton confined in a nanoring was calculated
by using a direct diagonalization method [26]; we would like to compare the binding energy

8
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obtained by the V–D method with those obtained by the Q1D variational method and direct
diagonalization method. For nanorings with R = 2.04 a∗

B (20 nm), the binding energies
for W = 0.51, 1.02 and 3.06 a∗

B obtained by the V–D method are 9.33, 6.29 and 3.60 Ry∗,
respectively. The corresponding binding energies obtained by the Q1D variational method and
direct diagonalization method are 9.21, 6.03, 2.79 Ry∗, and 7.33, 5.43, 3.12 Ry∗ respectively.
It can be seen that the Q1D variational method is suitable for rings with W/R smaller than 1/2.

Based on the discussions above, we can understand the AB oscillations of exciton spectra
shown in [28]. In 1D rings, there are no AB oscillations of exciton spectra because the ground-
state energy is negative infinity and all wavefunctions of even and odd excited states are equal
to zero at ϕ = 0. For exciton states in Q1D rings, however, the wavefunction of the ground state
is so localized that the oscillator strength is large while the oscillating amplitude is extremely
small. Those AB oscillations with small oscillator strengths in the calculated spectra only
belong to excited states. In the 2D case, AB oscillations can also be seen in narrow nanorings.
In fact, with a very small width, AB oscillations are similar to those in Q1D ones. However,
as the ring width increases, radial excitations become much easier, as shown in figure 5, and
the oscillator strengths of E(ne, nh, 0, 0) with ne = nh are quite large. Consequently, their
peaks can easily obscure adjacent small AB oscillation peaks. In conclusion, AB oscillations
of exciton spectra are most likely to be found in narrow nanorings by experiments with highly
sensitive detection techniques.

4. Summary

Using an exact series solution and V–D method, we have studied energy levels and binding
energies of an exciton in 1D, Q1D and 2D nanorings. Significant effects of Coulomb interaction
on the energy level structure and binding energy of excitons in 1D and Q1D nanorings have
been explored. For 1D nanorings with large radii, the even and odd exciton states tend to be
degenerate, and the binding energy decreases as the node number increases. Comparing the
present work with the case of two-electron states in 1D nanorings, we note that the sign of the
Coulomb interaction term can also change the degeneracy of even and odd states. As the radius
approaches zero, both the normalized exciton binding energy and two-electron interaction
energy increase with increasing node numbers. Moreover, their values approach constants
and zero for even and odd states, respectively. In Q1D nanorings, however, the degeneracy of
even and odd states at large radius does not exist. Nevertheless, crossings between adjacent
energy levels associated with even and odd states are found. In contrast to 1D nanorings, the
normalized binding energies of even states become larger than those of odd states, and all of
them approach zero as the radius approaches zero. In finite-width nanorings, the variation of
radius and width can also change the energy levels and their orders due to the competition
between confinement potential and Coulomb interaction. Our study also helps to explain the
change of exciton states and their AB oscillation behaviours from 1D to 2D nanorings.
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Appendix. The V–D method

The Hamiltonian of a few-particle system in a nanostructure is generally written as

H =
∑

i

Hi + Hint. (A.1)

9



J. Phys.: Condens. Matter 19 (2007) 346202 Z Dai and J-L Zhu

where the Hi are single-particle terms, and Hint is the interaction term between different
particles. The Hamiltonian H is usually solved by using a diagonalization or variation method.
However, in realistic calculations, Hi cannot always be solved directly and Hint including
attractive Coulomb interaction usually makes the diagonalization process converge slowly. In
some cases, a proper trial wavefunction in the variation method is difficult to find.

Considering the disadvantages of linear variation (diagonalization) and Ritz variation
methods mentioned above, we combine the two methods together and call the total process
the V–D method. In this method, the Hamiltonian H can be reorganized into N + 1 parts by
variable separation or/and coordinate transform as follows:

H =
N∑

j=1

H j (α j , β j , γ j , . . .)+ H′. (A.2)

Variational parameters α j , β j , γ j , . . . are introduced to describe the effective confining
potentials and interactions. Eigenenergies E j(n j ) and eigenfunctions 
 j(n j , �r j ) of
H j (α j , β j , γ j , . . .) can be obtained by using the series expansion method or other numerical
methods. Then a set of variational bases 
λ can be constructed by using 
 j(n j , �r j ) with
λ = {n1, n2, n3, . . . , nN }.


λ = F(
1(n1, �r1),
1(n1, �r1), . . . , 
N (nN , �rN )). (A.3)

For nonidentical-particle systems such as an exciton, the function F can be simply written as
the product of 
 j(n j , �r j ) with j = 1–N . For identical-particle systems such as a few-electron
one, F should be exchange-antisymmetric. It should be mentioned that the implementation of
the V–D method does not depend on the specific form of F . By defining Eλ and H′

λ,λ′ as

Eλ =
N∑

j=1

E j (n j)

H′
λ,λ′ = 〈λ|H′|λ′〉,

(A.4)

the V–D process can be described as
∑

λ′
[(Eλ − Ei)δλ,λ′ + H′

λ,λ′ ]Ai
λ′ = 0,

Eg = min
{v1,v2,...,vN }

E0,
(A.5)

and the detailed description using Newton’s method is as follows.

(1) Initialize the parameters {v1, v2, ..., vN }.
(2) Solve {E j(n j ),
 j(n j , �r j )} and construct the variational bases 
λ.
(3) Diagonalize the Hamiltonian matrix:

∑
λ′ [(Eλ − Ei)δλ,λ′ + H′

λ,λ′ ]Ai
λ′ = 0.

(4) Calculate the gradient of E0, adjust the parameters and jump to step (2) until the gradient
reaches zero.

(5) Finally, obtain the ground-state energy: Eg = min{v1,v2,...,vN } E0.

Here Ei is the eigenenergy and Ai
λ′ is the expansion coefficient of the eigenwavefunction,

v j represents a set of variational parameters {α j , β j , γ j , . . .}. It is obvious that the E0 are
dependent on the variational parameters α j , β j , γ j , . . . with j from 1 to N . The ground-state
energy Eg and the excited-state energies as well as the corresponding basis can be obtained
simultaneously by finding the minimum of E0 with the proper parameters.

It should be noted that parameters introduced in H j (α j , β j , γ j , . . .) can be easily chosen
in expressions of effective confining potentials and interactions. If the ring is not very wide, the
matrix elements H′

λ,λ′ with proper parameters are usually small, and hence the diagonalization

10
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process converges quickly and a small number of basis functions are needed. Even for rings
with large width, the V–D method converges much faster than direct diagonalization. For
example, the ground-state energy Eg of an exciton in a nanoring with R = W = 20 nm
obtained by using 90 variational basis functions converges better than that by using 256 usual
functions constructed by single-carrier orbitals.
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